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1. INTRODUCTION AND GENERAL OBJECTIVES OF WP6 

 

The use of spatially referenced data in cancer studies is gaining in prominence, fuelled by the 

development and availability of spatial analytic tools and the broadening recognition of the 

linkages between geography and health. Understanding spatial patterns of diseases in a 

population is at the very root of the field of epidemiology. The recent explosion in data gathering, 

linkage and analysis capabilities fostered by computing technology, particularly geographic 

information systems (GIS), has greatly improved the ability to measure and assess these patterns. 

Mapping allows a visualization of areas at high risk that face disparities to help prioritize areas that 

would benefit from public health actions. 

 

The group of experts on spatial analysis was set up in the framework of WASABY project 

(http://www.wasabysite.it/) to determine the methods suitable for analysis of cancer incidence 

provided by cancer registries according to availability of data at different spatial aggregation level 

with emphasis on small-area level and identificate open source software(s) applicable in these 

methods. The present delivery D6.1 is an interim delivery for WP6 final documents: the manual for 

CRs on mapping cancer burden (D6.2) and spatial analysis on breast cancer in young women 

applying data of the participating CRs (D6.3). Deliverable D6.1 describes the procedures and 

methods which will be used in D6.3. D6.1 contents, however, are not binding for D6.3: the 

WASABY WP6 group of experts may decide at a later stage to change an approach, a method or a 

computer programme. D6.2 will be broader, covering also selected additional methods we are not 

implementing in D6.3. 

 

The main focus of preparing a common report for participating CRs is on visualization and also on 

promoting reliable maps in both methodological and epidemiological terms. For this reason, 

smoothing techniques and adjusting for covariates are also discussed. There are numerous spatial 

smoothing techniques – we have selected three very distinctive methods so the differences 

between the approaches would be most visible and, at the same time, they are visually attractive 

and regularly applied on cancer registries’ data. 
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2. MAPPING CANCER INCIDENCE 

 

Over the latest decades, many atlases have been prepared to present cancer burden in specific 

areas or countries. The progress is supported by increasing availability of GIS and other analytical 

tools and computer power. Almost all are based on the aggregated data, while the point data are 

mostly used in few studies for investigating specific questions. The main reason for using the 

aggregated data is that geocoded data to an x and y coordinates of the residence are rarely 

routinely available in the cancer epidemiological research. However, spatially referenced public 

health data sets have become more available in recent years. 

 

2.1. REQUIRED DATASETS 

 

Technically, three groups of data are needed for preparing cancer incidence maps: 

1) cancer cases; 

2) background population; 

3) geospatial vector of geographical territory.  

Data on cancer cases and background population should be georeferenced to the same 

geographical level. In WASABY, participating cancer registries (CR) provided female breast cancer 

cases for 10 most recent calendar years, with age at diagnosis up to 49, for the smallest available 

geographical units. Furthermore, all of the CRs provided background population data for the same 

calendar years and same geographical units. Geographical information on residency was added to 

the cancer patients’ data within each registry. For this reason, the available level of geographical 

units vary considerably. Considering this, the participating CRs are classified according to 

availability of geocoded data: 

 Case A: cancer cases with information on residence address but not geocoded. 

o Investigation is needed to determine whether it is possible to allocate the desired 

geographical units of the residence address to each cancer case. 

o The dataset becomes case B if allocation is possible. 

 Case B: Cases with geocoded residence address but not linked to desired sub-area. 

o Geocoded residence addresses will be allocated the desired geographical units for 

each cancer case. 

o Analyses and mapping for aggregated data will be performed. 

 Case C: Cases with geocoded and linked residence address to desired sub-area. 

o Point-based addresses will be allocated to desired geographical units. 

o Analyses and mapping for aggregated data will be performed as in case B.  
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o Analyses for point data will be performed but only if background population is 

also available at point level (or coordinates of reasonable approximation). 

 

Geographical analyses and mapping differ on available data: 

 Area or aggregated data: addresses for cancer cases are aggregated into geographical 

units, usually administrative areas such as statistical region, municipality, country, postal or 

zip code. Observations are replaced with group summarization, which can lead to 

ecological bias and modifiable areal unit problem. The benefit is that no information on the 

exact address is needed for analyses. In cancer epidemiology classed choropleth maps are 

the standard.  

 Point data: exact coordinates of residence address (or coordinates of reasonable 

approximation) for cancer incidence cases and population or controls are required for 

making inference in cancer epidemiology. Analysis of spatial point patterns are used for 

dataset with cases and controls. But in case of population data also geographically 

changing age structure of population should be taken into account (for example using local 

SIR estimates or calculating risk surface by generalized additive model). 

 

Together with cancer cases and background population CRs also provided shapefiles for 

geographical units that are valid for corresponding time period. The shapefile format is a popular 

geospatial vector data format for geographic information system (GIS) softwares and is usually 

provided by national mapping authorities.  

 

The data collected from participating CRs were verified within the WASABY team and pre-

processed to be suitable for further analysis and final mapping. 
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Wasaby’s procedure, part 0 

 CRs provided incidence and background population data by same 5-year age group, 

a geographical unit and calendar year. CRs also provided shape files for 

geographical units that are valid for the corresponding time period.  

 The data collected from participating CRs were preprocessed to be suitable for 

further analysis in final mapping. The management of dataset included:  

o linkage of cancer and background population data on the same geographical 

scale, 

o classifying dataset according to availability of geocoded data into case A, B 

or C and allocating residence addresses to the desired geographical units for 

each cancer case if appropriate, 

o data quality check,  

o linkage with the socio-economic information (the European Deprivation 

Index, EDI),  

o production of a final dataset for each CR.  

 CRs are responsible for data completeness in both terms i.e., complete case 

ascertainment and information for each case. Cases not recorded by CR can not be 

compensated by modelling in WASABY. Typically, the datasets are prepared to as 

small geographical units as achievable by each CR, so underreporting may result in 

misleading outputs. Missing information for specific cases (such as missing age or 

address) will be rechecked with the CR. These are the issues of CR’s data quality 

and, if detected in course of data analysis, the matter of interpretation of the 

results. 

 CRs are responsible for (re)coding the addresses into geographical units for the 

analysis of aggregated data. 

 In case a CR provides exact addresses with x and y coordinates (point data) for 

cancer cases, but the population data is on the aggregated level, the cases will be 

allocated (using GIS function and shapefiles) to the provided geographical units 

(same as population data is given) for purpose of ASR and SIR calculation on 

aggregated level. 

 Excel, STATA and R will be used for data management. 
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2.2. GEOCODING 

 

CRs follow a common set of rules and recommendations for cancer registration and coding 

information on cancer entities. However, information on the address is not unified across CRs, 

mainly because of different situations specific for each country, which influence accessibility of 

detailed or coded address. Addresses can be available in different forms (for example coded or 

alphanumerically transcript) and levels – both impact on the possible analyses selection. 

 

Geocoding is the process of converting addresses (e.g., a street address) into geographic 

coordinates (e.g.,  latitude and longitude) which one may use to place markers on a map, or to 

position a map. For example, the Cancer Centre for Normandy – Centre François Baclesse - located 

in 3 Av Général Harris, 14076, Caen, France - has geographical coordinates (49.203529, -0.354513) 

in WGS84 coordinate system. Having precise coordinates for patients included in a study allows to 

have information for all geographical units: from the smallest to the largest ones (IRIS for France). 

It is necessary to evaluate accessibility to health care centres or health professionals (for example 

using distance), to perform environmental studies which aim to determine the effect of given 

pollutants on health and to calculate ecological deprivation indexes. In our previous example, 

geographical coordinates correspond to IRIS number 141181404. Geocoded addresses can be 

subsequently aggregated to any geographical units (administrative or user defined), which is 

beneficial when dataset cover longer time periods that are subject to changes in geographical 

units. 

 

WASABY project stimulates participating CRs to include geocoding into their routine registration 

process.  

 

Preparation for geocoding: 

 The required information is a precise address – registered by CRs – including house 

number, street type, street name, postal code, municipality or city (other code specific to 

country, for example in France, insee code which is specific for each municipality). Be 

aware that this information is considered as directly identifying by national data protection 

authority, so specific authorization might be required. The information may either be 

available in a common field or in separate fields, according to software.  

 Geographic Information System (GIS). The most famous commercial GIS are Mapinfo® 

(Pitney bowes) and ArcGIS® (ESRI). QGis is a freely available GIS and is more and more used 

by researchers or collectivity (https://qgis.org/en/site/forusers/download.html). Other 
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programmes include qVSIG or GRASS GIS (the list is not exhaustive). As QGis is widely used, 

there are many tutorials and discussions on the internet. This  should be the most 

appropriate for discovering GIS.Maps. 

 To make the link between address and geographical coordinates one needs maps.. Some 

maps are commercialized by famoulsy established  editors (for example ESRI) but the price 

can be expensive according to the product one needs. Free data are available on 

openstreetmap. 

 

The  geocoding process is performed step by step (Figure 1). Address is used with all information 

(number, type, name, postal code, locality). If an exact match is found, the software goes to the 

next address. If not, the next location level (using only type, street name, postal code and locality) 

is considered, and so on. Geolocation may be done at different levels according to the information 

used or available: 

 Level 1: Number, type, street name, postal code, locality; 

 Level 2: Type and street name, postal code, locality; 

 Level 3: Postal code, locality (municipality level, often the city hall). 

  

  
Figure 1: Illustration of the geocoding process. Source: http://help.arcgis.com/fr/ arcgisdesktop/10.0/help/ 
index.html#// 00250000003r000000. 
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2.3. INCIDENCE 

 

Incidence is an absolute number of all newly diagnosed cases of any disease in a defined 

population in one calendar year. The incidence considers the number of cases of a disease, not the 

number of patients, therefore the same patient may contribute more than one disease case to the 

incidence number, if he/she is diagnosed with more than one different cancers. 

 

The incidence registered by CRs only includes the data on patients with permanent residence in 

the registry’s area at the time of diagnosis (regardless of the place where they have been treated). 

Case-specific data relevant for geographical analysis are: information on cancer case identifier, age 

at diagnosis, gender and address. These are also the inclusion criteria for the analyses foreseen in 

D6.3. Other data describing cancer entity, personal characteristics or environment may be 

additionally included as covariates.  

 

The example of the procedure performed by Caen 

Caen is using ArcGIS 10.7 provided by ESRI France. Maps for geocoding are BD Adresse for 

ArcGIS Advanced® (provided by ESRI France and IGN).  

The following steps compose the geocoding process: 

 preparation of address with formatting street name, locality (to optimize automatic 

geocoding) programming with SAS® 9.4 Software, 

 quality control of original data (for example, locality in accordance with insee code) 

programming with SAS® 9.4 Software,  

 preparation of data allowing to differentiate the process according to locality type 

(more or less than 5,000 inhabitants) in GIS programming in python, 

 geocoding (mainly correction of addresses that have no correspondence), 

 allocating the corresponding IRIS for each coordinates, 

 geocoding quality control: addresses automatically matched are in accordance with 

original locality as with IRIS, 

 adding European Deprivation Index according to geographical unit (mainly IRIS). 
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2.4. AGE STANDARDIZED INCIDENCE RATES (ASR) 

 

Crude cancer incidence rate (crude rate) is defined as number of new cases (O) in a specified time 

period, divided by the number of persons, living in observed area specific population (popi) in the 

same time interval and geographical unit (denoted with index i):  

     CrudeRatei = Oi / popi . 

Crude rate is usually expressed as the number of cancers per 100,000 population at risk. Since the 

datasets consist of cases with age at diagnosis of cancer up to 49, crude incidence rate is not an 

appropriate measure for investigating and presenting geographical distribution. Age 

standardization is used in epidemiological analyses since it takes into account not only the 

distribution of population but also their age structure. 

 

Wasaby’s procedure, part 1 

Tole zdaj piše o background population – je zadosti ? 

A sem pravo besedo uporabila ? 

Ker CR uparambljam kot kratico za cancer registry 

 

WAter and Soil contamination and Awareness on Breast ca 

 Possible issues with provided datasets are: 

o In case a CR provides exact addresses with x and y coordinates (point data) 

for cancer cases, but the population data is on the aggregated level, the 

cases will be allocated (using GIS function and shapefiles) to the provided 

geographical units (same as population data is given) for purpose of ASR and 

SIR calculation on aggregated level.  

o When incidence and population datasets cover different calendar years, 

only overlapping years contained in both datasets will be included into the 

analysis. 

o In case there is some geographical unit with no female population, the unit 

will be joined with neighbouring unit having the smallest female population 

for purpose of map presentation only. Geographical unit with no female 

population will be excluded from analysis. 

o In case dataset includes a calendar period of more than 10 years, the size of 

geographical units will be checked in terms of number of cases and 

population in smallest units. If reasonable, the relevant CRs will be asked to 

produce several maps for shorter time periods (but not less than a 5 years 

span). 

 Excel and R will be used for data management. 
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Age-standardized rate (ASR) is a method of direct standardization that takes into account the 

period of diagnosis and age structure of population. ASR is a theoretical incidence rate assuming 

that the age structure in the observed population is the same as in the standard population – it 

tells the crude rate in observed population in case if it´s age structure is the same as in standard 

population. Age-standardized rate is used when analysing the incidence/mortality within a longer 

time of period (if the age structure of population changes in time) or comparing the 

incidence/mortality between populations with different age structure. 

 

Age-specific rates (Ra) in 5-year age groups (index a), starting at 15 years (i.e. 15-19, 20-24,…, 45-

49) are calculated for investigated time period for each geographical unit. These age-specific rates 

equal the number of cases divided by the corresponding population. Age-standardised rates (ASRi 

for geographical unit i) are calculated by multiplying the age-specific rates (Rai) by standard 

population weights (Na) and then adding together.  

     ASRi = ∑a Rai ∙ Na . 

 

Age-specific standard deviation is given as 

SDai
2 = Oai / nai

2 . 

In calculating standard deviation of ASRi for geographical unit i, also population’s distribution is 

accounted in: 

   
          

   

  
  

 

 

And confidence interval (CI) is given by (α is confidence level, zα/2 is the (100∙α/2) the centile of the 

standard normal distribution): 

                   

 

For the most part, the choice of weights (the standard population) is based on convention, the 

intended and potential comparisons, and various other considerations. There is often no absolute 

correct choice, and there can easily be different opinions about the best one. Regardless of the 

chosen standard population, the ASRs do not reflect the true cancer burden on the population but 

serves as relative estimation of the magnitude of cancer burden for the purpose of comparisons.  
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Figure 2: Comparison of applying different standard populations on breast cancer incidence in females, 
Slovenia 2000-2016.  

 

 

Wasaby’s procedure, part 2 

 European standard population (Doll 1976) will be used for age standardization for 

purpose of comparisons between European countries. 

 

Figure 3: Population structure in European standard population (Doll 1976).  

 

 ASR values for geographical units will be categorised into classes for mapping 

purpose using standard deviation. 

 Map of ASR will be produced for given geographical units using colour palette in 

paragraph 2.4.  

 R, ArcGIS and QGIS will be used for analyses and mapping. 
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2.5. STANDARDIZED INCIDENCE RATIOS (SIR) 

 

We assume the observed number of new cancers (Oi) in each single geographical unit i follows a 

Poisson distribution with mean µi = Eiθi, where θi is the unit specific relative risk. Ei is the expected 

number of new cases if the population in a particular area (popi) has the same age-specific 

incidence rates as some larger comparison population (R’a for age group a in reference 

population), usually the overall population of the whole study area, or some other reference 

population. Ei is derived from indirect standardization. Observed and expected numbers of cases 

can be compared, because both refer to same population. The ratio of the observed number of 

cases to that expected is called standardized incidence ratio (SIR): 

      SIRi = Oi / Ei ; 

      Ei = ∑a R’ai ∙ popai . 

Confidence interval for each geographical unit i is given by Fisher’s exact test as ( is from chi-

squared distribution, α is confidence level): 

          

       

 

    
 

          


   

 
 
         

 

    
 

 

SIR of 1 indicates that the total observed number of cases is the same as expected in the 

geographical unit being studied compared to age-specific rates in reference population. This 

means SIR maps can not be compared among themselves except in case they are all produced 

with same reference age-specific rates – for example, in time trends reference age-specific rates 

can be taken for whole time interval under study, but maps are prepared for individual shorter 

time periods. A ratio less than 1 indicates a lower than average relative risk and over 1 is a higher 

than average. The variance of θi is proportional to Ei-1 and so, for areas with small population size, 

there will be a high sample variability in geographical units with small population.  

 

As with the direct method, the result depends in part upon the standard chosen. However, the 

indirect method of standardization is less sensitive to the choice of standard than the direct one. 

Indirect method is also preferable to the direct method when age-specific rates in geographical 

unit is based on small numbers of subjects – rates used in direct adjustment would thus be open 

to substantial sampling variation.  
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2.6. SCALE AND COLOUR PALETTE 

 

The aim of  the WASABY project is not comparing cancer incidence between countries or regions 

so there is no need for fixed scaling when mapping ASRs. The sequential colour scheme of nine 

classes starts with light purple shades for small values starting with 0 and turns dark purple at the 

highest values, the highest limit being maximum of all ASRs. Areas in which three or fewer cases of 

disease occurred were given a grey colour due to the in-stability of the data. 

 

 

Figure 4: Sequential colour scheme for mapping ASRs. The colours are chosen from ColourBrewer pallets 
available at http://colourbrewer2.org/. 

 

Wasaby’s procedure, part 3 

 For reference population, the overall population of the whole study area will be 

used, and age-specific incidence rates will be calculated. 

 SIR values for geographical units will be categorised into classes for mapping 

purpose. 

 Map of SIR will be produced for given geographical units using the colour palette in 

paragraph 2.4.  

 R, ArcGIS and QGIS will be used for analyses and mapping. 
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Relative scaling is used for mapping SIRs. Since SIR is interpreted as the relative risk relative to the 

national average, a divergent colour scheme is appropriate with quasi-continuous gradient. The 

middle class is the brightest and presents relative risk equal to national (can be interpreted as 

national average). Darker and more vivid colours indicate greater deviations from the national 

average than lighter, paler colours.  

All values lower than half and higher than twice the national average fall into the darkest two 

classes. The next 15 classes (dark green to pale light green) represent the value range 0.5 (= half 

national average) to 0 (= no deviation from the national average). A normal distribution with mean 

value 1 and a standard deviation of 0.268 means that approximately the same number of cases 

may be expected for each class. The area above the national average (brown colour) is reciprocal. 

The top class in the darkest brown contains all values that are greater than 2, ie twice the national 

average. The 15 classes between 1 and 2 were formed by the reciprocal value of the 

correspondent lower classes. 

The same scale and colour pallet will be used for all CR’s datasets. The same colours in two maps 

based on the same dataset can be compared (for example SIRs and smoothed SIRs). The smoothed 

SIRs deviate less from national average, so light colours are used in greater extent when mapping. 

The same colours in two maps based on different datasets (for example different countries or 

regions) should not be compared directly, as they correspond to different national average. The 

relative deviation to the country average for the same colour is, however, equal. 

   

 

Figure 5: Divergent colour scheme for mapping SIRs. The colours are chosen from ColourBrewer pallets 
available at http://colourbrewer2.org/. 
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3. SMOOTHING 

 

Geographical units are problematic in terms of is their size and the population they cover. If large 

spatial units are used, the heterogeneity of exposure and different population characteristics may 

be missed. On the other hand, the number of cancer cases is usually low in small spatial units and 

analysing the observed spatial pattern proves to be inefficient, as the population base from which 

these cases arise is often very low too. This can lead to unstable and misleading estimates of the 

true rate. Modern approaches to relative risk estimation often rely on smoothing methods, which 

produce more stable and “less noisy” estimates, providing more confidence that any observed 

differences are real and not just due to chance. 

 

The basic idea of mapping the smoothed ratios is to borrow information from neighbouring 

regions to produce more stable estimate of the ratio associated with each geographical unit and 

thus separate out the spatial pattern from the noise. Smoothing techniques are appropriate when 

we are not looking for individual regions with elevated ratios but, instead, we are interested in 

getting the general assessment of broad trends and patterns. On the other hand, smoothing might 

remove details from the map that would be important for interpretation. If the data reflect region 

specific features (when cancer risk determinants depend on local administrative decisions), 

smoothing is not advisable. 

 

There are numerous spatial smoothing techniques – we selected three very distinctive methods so 

that the differences between the approaches would be most visible and, at the same time, they 

are visually attractive and regularly applied on cancer registries’ data. 

 

 

3.1. FLOATING WEIGHTED AVERAGES METHOD 

 
The “Finnish smoothing method” uses floating weighted averages and was first used in the 

national cancer incidence atlas of Norway and further developed in the Finnish atlas and in the 

Cancer Atlas of Northern Europe. The floating weighted averages method has mostly been applied 

to age-adjusted incidence and mortality rates (direct standardization) but can equally well be used 

for many other measures of cancer frequency such as to SIR (as in the approach of this WP6). 

Floating weighted averages aim at diminishing the random variation by locally calculating floating 

averages, weighted by population (population weights are denoted by wi
pop): 
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where the whole population (pop) is the sum of area specific population (pop i). Simultaneously we 

weight by distance (d) using the following formulae: 

    

  











max

max

m2

0d

i
Dd;0

Dd;D/d1/1
w

. 
 

 
Figure 6: Distance weighting function. 

 
In most cases, the maps seem to smooth nicely when radius Dmax is about 10-fold compared to 

distance weight factor D0. Although the maximum distance of influence (Dmax) seems quite large, 

one should bear in mind that the spatial weights are diminishing fast by distance. Further 

extension of Dmax normally results in visible changes on the map, whereas finding an optimal value 

for d0 may require iterations. If d0 is short, the single geographical unit's specific rates (in this case, 

mainly small geographical units with zero cases) will become visible. With setting D0 =100 km, the 

rural areas have lost almost all variation and we are close to a situation of over-smoothing. 

 

Finally, both spatial and population weights are multiplied: 

      
pop

i

d

ii www 
. 

Because of population weighting, large cities (that is, municipalities which include large cities) 

significantly influence its neighbourhood when smoothing. It has been shown that cancer burden 

can vary between the main cities and the surrounding less urbanised regions. For this reason, 

selected big cities are often excluded from the smoothing and illustrated separately on the map as 

circles whose colour presents observed (i.e. non-smoothed) cancer incidence and the area 

corresponds to the population size in those cities. The procedure thus minimizes their strong 
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effect in the bias of the estimates in their surroundings. In addition, the excluded big cities are 

preferable to be positioned at the centroids of the principal (or the biggest) cities themselves 

rather than at the centroids of the corresponding geographical units. Further adjustment for more 

relevant cancer maps is to position all geographical units to coordinates (centroids) of principal 

city/settlement instead of centroid of the geographical unit itself, which better accounts for the 

population distribution in floating weighted averages method. 

 

For observed geographical unit the grid net needs to be constructed and the calculated SIR for 

each grid point (indexed by g) is then: 

     





'i

'i

'i

'i'i

g
w

wSIR

SIR

. 

In the last equation index i’ runs over the selected geographical units except through excluded 

larger cities.  

 

 
Figure 7: Description of floating weighted averages method on Slovenian municipalities’ case. Blue dots are 
the centroids for selected municipalities used for calculation of smoothed standardized incidence ratio (SIR) 
for one selected grid point g (SIRg). The blue circle has the maximum radius (Dmax). Red square marks the 
selected grid point g. Grey dots are big cities excluded from calculation of smoothed picture and are 
positioned at the centroids of the principal cities themselves rather than at the centroids of the 
corresponding municipalities. Black dots are neither big cities nor in the Dmax range of the selected grid 
point. 
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3.2. BAYESIAN HIERARCHICAL MODELLING 

 

Another widely used approach to handle unreliable observations in the spatial analyses is the 

Bayesian hierarchical modelling. There are numerous ways to conduct spatial smoothing within 

Bayesian models, including through considering distance between areas, or adjacency. The general 

concept used in the models involves defining a neighbourhood of adjacent areas for each of the 

small areas, such that the estimate for a given area is dependent on the areas it shares a boundary 

with, making the estimate more similar to those of its neighbours. Areas which have small 

populations will be subjected to greater neighbourhood smoothing compared to areas with larger 

populations. 

Wasaby’s procedure, part 4 

 The grid areas will be constructed with 500m distance covering the whole 

geographical areas. 

 Starting parameters for preparing maps with floating weighted averages method 

are: 

o Geographical units with more than 20,000 female population will be 

excluded from smoothing and their rates shown in circles above the 

smoothed background.  

o D0 = 20km, Dmax = 200km and m = 1. 

o After investigation of the resulting maps, the parameters will be adjusted 

and new maps prepared. The same parameters will be used when preparing 

ASR and SIR maps with Finnish smoothing method for the same dataset. 

 Two maps will be prepared: 

o ASR (and accordingly SIR) values for grid points will be categorised into 

classes for mapping purpose. Grid points are coloured instead of assigning 

the color to the whole geographical unit’s area. 

o ASRs from paragraph 2.2 smoothed with floating weighted averages 

method. For all dataset, the same classes and colour palette will be used as 

in paragraph 2.2. 

o SIRs from paragraph 2.3 smoothed with floating weighted averages method. 

For all datasets, the same classes and colour palette will be used defined in 

paragraph 2.4. 

 R and ArcGIS will be used for analyses and mapping. 
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Prior distributions are assigned to random effects and hyperprior distributions are assigned to the 

parameters of the prior distributions, thus creating a multilevel hierarchical Bayesian model. The 

posterior distribution is the target outcome and is approximately equal to the prior times the 

likelihood.  

 
WinBUGS and BYM 

The convolution model originally proposed by Besag et al.: 

Oi ~ Poisson(µi) 
 

  
  

  
                  

Oi and Ei represent the observed and the expected number of cases in the i-th geographical unit. Hi 

and Si are two types of random effects, which handle the variation that cannot be explained by 

fixed effects. Hi represents the unstructured component that is geographically independent. Hi is 

given the independent normal distribution with mean zero and precision h. The spatial 

autocorrelation component (Si) is defined according to the conditional autoregressive (CAR) model 

of Besag, York, and Mollie. The CAR model with L2 norm (also called a Gaussian Markov random 

field) for S has an improper density  

 
)QS'S

2
exp()|S(p s2/)Gn(

ss


  

, 

where s controls smoothing induced by this prior, larger values smoothing more than smaller 

ones; G is the number of “islands” (disconnected groups of regions) in the spatial structure; and Q 

is n × n with nondiagonal entries qij = - 1 if regions i and j are neighbours and 0 otherwise, and 

diagonal entries qii are equal to the number of region i’s neighbours. This is a multivariate normal 

kernel, specified by its precision matrix sQ instead of the usual covariance matrix. In the Poisson 

count case the commonest assumed prior distribution is that precision parameters s and h have 

Gamma priors (0.5,0.0005) as suggested by Bernardinelli et al.  

 

R-INLA and BYM2 

WinBUGS and MCMC have long been used for Bayesian hierarchical modelling so we will use it for 

comparison in the scope of WASABY project. In the classic model of Besag, York and Mollié, BYM, 

spatially structured variation is not independent of unstructured variation (a problem called non-

identifiability). As a consequence, part of the spatial dependence (structured variation) might 

result as quite heterogeneous (unstructured variation) and vice versa. There are alternative 

formulations to the BYM model, such as the Leroux and Dean models, in which it is ensured that 
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the structured spatial variation is independent of the unstructured. However, neither model scales 

spatial variation. As a consequence, hyper parameters depend on the spatial structure of the 

problem and cannot be interpreted correctly. On the other hand, inferences will be made using a 

Bayesian approach. In this context, the choice of a priori distributions of hyper parameters, known 

as priors, can have a considerable impact on the results. Leroux and Dean models use standard 

priors that lead to overfitting. The main consequence of overfitting (a problem also known as 

multicollinearity in the context of multiple linear regression) is that the estimators of the variances 

are greater than the real ones and, therefore, the credibility intervals will be much wider than 

expected, which implies that the null hypothesis (that the coefficients are equal to zero) will not 

be rejected more times than it should. 

 

Simpson et al. proposed a modification of the BYM model (BYM2) that solves these problems, 

because it scales spatially structured variation and uses priors that penalize complexity (called PC 

priors). These priors are robust, in the sense that they have no impact on the results and also have 

an epidemiological interpretation. 

 

MCMC is slow (often very slow), it does not scale well, and it sometimes fails with complex models 

(model will not converge). In this sense, Integrated Nested Laplace Approximations (INLA) is a 

(very) fast alternative to MCMC for the general class of latent Gaussian models. In addition, the 

use of PC-priors (in INLA) allows the results not to depend on the priors (as does the MCMC).The 

Integrated Nested Laplace Approximations (INLA) approach is implemented in the R package R-

INLA. The fundamental building block of such Gaussian Markov random field (GMRF) models, as 

implemented in R-INLA, is a high-dimensional basis representation, with simple local basis 

functions.  
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3.3. LOCAL SIR ESTIMATES 

 

Local SIR estimates use circular “moving” window centred on grid locations covering the whole 

study area. SIRs is calculated for each grid point. The procedure requires data on exact x, y 

coordinates of the residence of each person included into the analysis with indication, which are 

also the cancer cases. For each person, the information about gender and age group is needed for 

the purpose of (indirect) age-standardization. At each fine grid location, the circle is centred and 

case and population data occurring within the circle are determined. Based on this information, 

SIR is calculated, which belongs to this specific grid point. 

 

The circle radius is not fixed in advance but is changing from Dmin to Dmax with predefined step until 

predetermined minimum population is reached. This way, for each grid point, the calculated SIRs 

are based on (approximately) the same number of persons at risk giving more stable estimates. 

Dmin can be chosen equal or larger than the grid spacing in order for circles to overlap. Dmax ca 

should not be larger than half of the width or height of the study area. Dmax controls maximum 

distance of influence.  

 

Wasaby’s procedure, part 5 

 The posterior distribution will be approximated by using the Gibbs sampler in 

WinBUGS software. Running two independent Markov chains are recommended. 

The ‘burn-in’ samples need to be discarded (for example, we will start by discarding 

first 10,000 out of total 20,000 iterations). Convergence of relative risk will be 

confirmed by graphing their traces and observing random mixing of chains, which 

revealed white noise variation around a common value with no trend. This was 

supported by observing Brooks–Gelman–Rubin diagnostics, which clearly satisfied 

convergence criteria. 

 WinBUGS and BYM have long been used for Bayesian hierarchical modelling as a 

gold standard, so we will use it for comparison in the scope of WASABY project. 

However, since this statistical field has recently developedwe will also apply 

modified methodologies for Beyeasian hierarchical modelling: R INLA and BMY2. 

 For Bayesian hierarchical modelling R INLA package and WinBUGS software will be 

used. R and ArcGIS will be used for other analyses and mapping. 
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Figure 8: Description of local standardized incidence ratio (SIR) estimates method on Slovenian case. Black 
dots: grid points. Red dots: the selected grid point for which the SIR is calculated using only the data within 
circular blue window (which is moving through grid points). Blue colour: the population that fall into the 
selected window. Grey colour: the rest of the population not included in the window. 

 

Generally, the approaches based on exact geographical locations have problems with estimates 

near area border. The grid points at the border have missing population and increasing the circle 

does not account for that and usually generates biased estimates. One solution would be to 

reduce the circle radius or the population criteria in the border. However, this operation increases 

the variance of the estimates. Further on, at the border there can be also very sparse population. 

Therefore, it is not recommended to map the values for grid points, where the minimum 

population requirement is not reached in circle with radius Dmax (the map in such parts is not 

coloured). 

 

Local standardized incidence ratio estimates allow to use point data for preparing cancer maps in 

fine resolution, thus revealing more localized patterns and ignoring the arbitrary administrative 

borders. The map of the local SIR estimates emphasizes extremes, but unlike the map, based on 

the observed SIRs, these estimates are stable, enabling more accurate evaluation. The 

disadvantage is that the geocoded data are not routinely available. 
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Wasaby’s procedure, part 6 

 The map of local SIR estimates will be prepared for datasets whe both population 

and cancer incidence datasets will have geocoded data to an x and y coordinates of 

the residence. 

 The same set of grid points will be used as in the floating weighted averages 

method. 

 Starting parameters for preparing maps with floating weighted averages method 

are: 

o Dmin = 1km, Dmax = 15km with step 1km until predetermined minimum 

population is reached. 

o Minimum population requirement is 5,000. 

o After investigation of the resulting maps, the parameters will be adjusted 

and new maps prepared. Same parameters will be used when preparing ASR 

and SIR maps with Finnish smoothing method for the same dataset. 

 SIR values for grid points will be categorised into classes for mapping purpose.  

 R and ArcGIS will be used for analyses and mapping. 
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4. ADJUSTING FOR COVARIATES 

 

Ecological analysis is defined as the assessment of the associations between disease incidence (eg, 

suicide) and variables of interest (eg, social or environmental covariates). These variables in an 

ecological analysis are defined on aggregated groups of individuals rather than the individuals 

themselves. The reason for focusing on the comparison of groups rather than individuals is that 

individual-level data on the joint distribution of two or more variables within each group are 

usually missing. Therefore, an ecological study may be considered to be based on an incomplete 

design. 

 

Socioeconomic problems are now seen as health problems that must be addressed to ensure that 

everyone has an equal chance for a healthy life. By following the Townsend philosophy of relative 

deprivation and its extension to population level on an ecological scale, a European Deprivation 

Index (EDI) was proposed by two French teams in 2012. 

 

Association between the socio-economic status and the cancer incidence is modelled using 

Bayesian approach rather than a classical Poisson regression because we expect to encounter 

overdispersion defined as variability in the number of cases to be higher than expected by the 

Poisson distribution. The differences in population sizes of the geographical units, called 

unstructured spatial heterogeneity, might introduce variations and this method permits the 

distinction between random fluctuations and true variations in the incidence rates. Moreover, 

neighbouring areas may not be independent and have similar incidence rates. This is called spatial 

autocorrelation and is also integrated in the Bayesian approach. Therefore, the overdispersed 

Poisson model was expanded by including spatially dependent and spatially independent random 

variables and treated with Bayesian approach. We used the hierarchical convolutional Bayes 

model:  

  
  

  
                    

 

   

 

where a represents the basic (logarithmic) relative risk of disease in the entire study area. Oi and Ei 

represent the observed and expected number of cases in the i-th geographical unit. Hi are 

unstructured (heterogeneous) random factors that are geographically independent and Si is a 

spatially dependent component (spatially structured heterogeneity). We define it by a 

conditionally autoregressive (CAR) prior probability distribution. Xij is a set of J explanatory 

variables for an individual geographical unit that is empirically obtained. βj are the regression 
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coefficients for the j-th explanatory variable. The model is the same as in paragraph 3.2 with 

added fixed effect Xij, in our case EDI. 

 

 
Figure 9: An example of a model with explanatory variables (Xi) constructed in WinBUGS. 

 

The regression coefficient associated with the variable EDI and its 95% confidence interval are 

estimated in the model. A positive parameter related to EDI means an over-incidence in 

disadvantage areas and a negative parameter related to EDI means an over-incidence in affluent 

areas. 

 

 

  

Wasaby’s procedure, part 7 

 This step will be conducted only for datasets, where European deprivation index 

(EDI) is provided by CR for the same geographical units as incidence and population 

data. 

 EDI dataset will be linked to the cancer incidence dataset. 

 EDI will be classified into quintiles, meaning each dataset (country) will have 

different classes for EDI.  

 R, ArcGIS and WinBugs will be used for analyses and mapping. 
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5. CONCLUSIONS 

Cancer maps are important tools in public health research. Mapping can be viewed as a 

descriptive presentation of the cancer burden in some geographical area. They can help to point 

out areas where health policy should be improved or/and where more detailed analytical research 

is needed. They are also used for evaluating the performance of public health interventions, like 

organized screening programs. In any case, maps must be designed to communicate effectively 

among public, health researchers and decision makers. The biggest challenge is to ensure that 

maps can not be misinterpreted. 

 

Geographical analyses are feasible when outcomes or exposures or a combination of both have a 

spatial structure. Studies of this nature can assist in public health decision-making. In particular, 

geographical analyses of the distribution of risk factors can be useful in prioritizing preventive 

measures. Disease mapping is useful for health service provision and targeting interventions if 

avoidable risk factors are known. 

 

Geographical studies of disease and environmental exposures may in some cases be sufficient by 

themselves to justify action, for example if the exposure-disease association is specific, the latency 

is short and the exposure is spatially defined. Geographic analyses with no information at the 

individual level are vulnerable to bias. However, while individually based epidemiological studies 

are in general needed to demonstrate the causal nature of an exposure-disease association, 

geographical analyses can help strengthen the available evidence. 

 

In the WASABY project several European CRs contributed their datasets for purpose of 

geographical analyses and mapping. Using the same procedures for all datasets gives great 

opportunity to compare and point out possible issues one may expect when starting with 

geographical analyses themselves. Joining the experience from all tasks performed in D6.3 will be 

an important part of the practical manual (D6.2). Such manual is targeted to CR’s personnel trying 

to start up the geographical investigation of their registries’ data by themselves. The practical 

manual will be expanded with examples on participating CRs’ datasets and identification of 

methods and softwares useful for studying geographic distribution of cancer incidence.  
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Wasaby’s procedure, part 8 

 Each report for specific dataset will be concluded with:  

o list of performed analyses and prepared maps, 

o some remarks on issues with datasets and  

o specifics with dataset and data manipulation to include in practical manual 

for CRs (D6.2). 
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